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Abstract— Conventional clustering technique for gene expression 
data provides a global view of the data. In the biological 
prospective, a local view is essential for better analysis of gene 
expression data with simultaneous grouping of genes and 
conditions. Several biclustering techniques have been proposed 
in the literature based on different problem formulation. 
Therefore, it is difficult to compare these techniques with respect 
to their biological significance, effectiveness and accuracy. In this 
paper, we have proposed a biclustering technique based on two 
layer free weighted crossing minimization of a bipartite graph. 
Using this technique, we can mine different types of biclusters 
amid noise and it works well in practice for real and synthetic 
gene expression data. The experimental evaluation reveals the 
accuracy and effectiveness of this technique with respect to noise 
handling and execution time in comparison to other biclustering 
approaches.     
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I. INTRODUCTION 

The DNA microarray technologies have makes it possible 
to study the expressions of thousands of genes over hundreds 
of experimental conditions. It can be used to study 
fundamental biological phenomena such as development or 
evolution, to determine the function of new genes, to infer the 
role of genes in diseases, and to monitor the effect of drugs 
and other compounds on gene expression.  Data arising from 
microarray experiment, called gene expression data, are 
usually arranged in the form of a data matrix, where rows 
represent genes and columns represent experimental 
conditions.  Each element of this matrix represents the 
expression level of a particular gene under a specific condition 
and denoted by a real number, which is usually the logarithm 
of relative abundance of mRNA of the gene under specific 
condition. The analysis of such high volume data matrix poses 
challenges to existing data mining tools. One of the most 
important data analysis tool, called cluster analysis, group data 
into a set of clusters. The goal of clustering is to separate a 

finite, unlabeled data set into a finite and discrete set of 
natural, hidden data structures. This powerful technique can 
be used to reveal biologically meaningful patterns in 
microarray data. Conventional one-way clustering methods 
are based on similarity among genes across all conditions. 
Recently, biclustering or co-clustering is commonly employed 
on microarray data, as genes may be co-regulated under 
limited conditions. An illustrative discussion on many of these 
methods can be found in [1]. 

The Minimum Linear Arrangement (MinLA) is commonly 
employed to solve the module replacement problem in a VLSI 
circuit layout, where the edges represent the wires and the 
nodes represent modules [2],[3]. MinLA is basically used here 
to minimize the total wire length, which is equivalent to 
crossing minimization in a bipartite graph [4]. The efficiency 
and effectiveness of biclustering algorithm largely depends on 
the problem formulation. Our method is based on weighted 
two layer free crossing minimization of a bipartite graph. The 
optimal crossing minimization is NP-hard [5] and as a result 
large numbers of heuristics and approximation algorithms 
have been devised for these problems with reasonable 
accuracy. Basically, two layer free crossing minimization 
problem is solved by iteratively applying the one layer free 
crossing minimization solution. 

In this paper our contributions are: 
 We model the gene expression data as a weighted 

bipartite graph by keeping experimental condition in 
the upper layer and genes in the lower layer. 

 An efficient implementation of  the proposed model, 
called  BiFree, is provided. We employ barycenter 
heuristic [11] for the upper layer, and an 
approximation algorithm for the lower layer. 

 An efficient algorithm for bicluster extraction is 
proposed. We provide an efficient local search based 
algorithm for bicluster extraction using conditional 
entropy, which can extract coherent, constant and 
overlapped biclusters.  
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II. RELATED WORK 

Biclustering of gene expression data is a new field of     
research. Researchers have used different similarity criteria 
and techniques for biclustering. 

          Cheng and Church [6] identify biclusters with the help of 
mean squared residue score, which is a measure of the 
coherence of rows and columns in the bicluster. Here the user 
has to input a value of mean residue score δ and the number of 
biclusters to be extracted. This method involve several 
iterations and each iteration mine only a single bicluster while 
previously identified biclusters are masked with random 
values. However they did not address the issue of noisy data, 
where as in this paper we concentrate on noisy data. 

Tanay et al. [7] introduced SAMBA, in which the data are 
modelled as a bipartite graph with genes corresponding to 
vertices in one bipartition and samples corresponding to 
vertices in other bipartition, where edges representing 
significant changes in expression. Edges and non-edges are 
weighted by likelihood scores derived from a probabilistic 
model for the bipartite graph. A bicluster is defined as a heavy 
subgraph, where the weight of the subgraph is the sum of the 
weights of the corresponding edges and non-edges. It 
repeatedly finds the maximal highly-connected subgraph in 
the bipartite graph and perform local improvement by adding 
or deleting a single vertex until no further improvement is 
possible. In order to avoid exponential runtime, they assumed 
that row vertices have d-bounded degree. However, our 
technique can handle graphs of arbitrary degrees. 

Ben-Dor et al. [8] proposed OSPM, in which a bicluster is 
defined as a cluster of genes with the same rank profile across 
the biclustered samples. This method can mine large and 
statistically significant biclusters with the help of a greedy 
algorithm for identifying a fixed pattern of rows in a data set, 
one at a time. The time complexity of this technique is 
O(nm2l), where n and m are the number of rows and columns 
of the data matrix and l is the number of biclusters, which is 
slower than our approach. 

Ahsan and Amir[9] identify biclusters by recursively 
removing noise with the help of crossing minimization 
technique. This method is based on binary representation of 
the bipartite graph corresponding to input data matrix. It is 
difficult to mine coherent biclusters, as this method use a 
static discretization of the input data matrix. 

Wang et al. [10] proposed RMSBE, which can identify 
optimal square biclusters with the maximum similarity score. 
This method performs multiple scans of the data matrix in 
order to compute similarity score, reference gene 
identification and bicluster identification. The time 

complexity of this technique is  ))(( 2mnnmO  , where n is 

number of rows and m is number of columns. Due to this 
cubic nature of complexity, it is not feasible for very high 
dimensional data. Prelic et al. [6] proposed BiMax, which can 
identify constant biclusters. This method discretize  the input 

expression matrix into a binary matrix based on a threshold 
value. Therefore it is difficult to identify coherent biclusters. 

Waseem and Asfaq [14] proposed cHawk, to identify 
biclusters with the help of crossing minimization paradigm. 
This method employs the barycenter heuristic to arrange 
vertices in both layers of a bipartite graph. The similarity test 
is done based on bregman divergence. This approach is 
similar to our approach as we also employ bipartite graph for 
representation of gene expression data. The time complexity 
of this technique is O(dnm), where n and m are the number of 
rows and columns of the input data matrix and d is the average 
degree of overlap among biclusters, which is slower than our 
approach. 

Bergmann et al. [24] proposed the iterative signature 
algorithm (ISA) that uses gene signatures and condition 
signatures in order to extract biclusters with both up and 
down-regulated expression values. They identify several 
transcription modules (biclusters) by executing the algorithm 
on reference gene sets. The reference gene sets needs to be 
carefully selected for extraction of good quality biclusters. 

 

III.  MODEL FORMULATION 

Bipartite Graph: A graph ),( EVG  is called Bipartite if its 

vertex set V  can be decomposed into two disjoint subsets 0V  

and 1V ( i.e. 10 VVV  ) such that every edge in E   joins a 

vertex in 0V  with a vertex in 1V  (i.e.  10 VV ).  

 
Weighted Bipartite Graph: A graph ),,,( 10 WEVVG is called 

weighted bipartite graph if )( ijwW   where 0ijw   denotes 

the weight of the edge ),( ji between vertices i  and j . 

 
Bipartite Drawing:  A bipartite drawing or 2-layer drawing of 

),,( 10 EVVG is a graph representation where the nodes of 

0V and 1V are placed in two parallel lines 0y  and 1y , 

while the edges are drawn with straight lines between them. 
 
Crossing Number:  Let h  be a bipartite drawing of bipartite 
graph ),,( 10 EVVG . Let )(ebcrh represent the number of 

crossing of the edge Ee with other edges of E . Let 
)(hbcr represent the total number of crossings in h i.e. 


e

h ebcrhbcr )(
2

1
)( . The bipartite crossing number of 

G denoted by )(Gbcr is the minimum number of crossings 

over all bipartite drawings of G i.e. )(min)( hbcrGbcr h . 

 
Weighted Crossing:  Let two edges Eee 21, of a bipartite 

drawing cross each other with nonnegative weights  )( 1ew  

and )( 2ew respectively. Then, this crossing amount to 

)()( 21 ewew  in the total weighted crossings. 

The barycenter [11] and median heuristics [12] are the most 
popular heuristics for crossing minimization problem. A 
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survey of various heuristics has been taken up in detail in [13] 
and shown that the barycenter method produces better results 
than the median heuristics. The barycenter heuristic orders the 
vertices in upper layer 1V by computing the averages of the 

positions of the adjacent vertices in lower layer 0V . This 

technique is employed when the ordering of vertices in both 
layers of a bipartite graph is to be determined. As a result, 
similar vertices come closer and form biclusters. Each 
iteration of this heuristic can be implemented in 

)log( VVEO  time. In gene expression data, the numbers of 

experimental conditions are very few in comparison to the number of 
genes. This motivates us to place experimental conditions in the 
upper layer  1V  and genes in the lower layer  0V  of the 

bipartite graph. We employ weighted version of barycenter 
heuristic to reorder vertices of upper layer for a single 
iteration. This crossing minimization process brings similar 
vertices in the vicinity of each other and helps us to achieve 
biclustering in less time. In order to rearrange the vertices of 
lower layer, we have employed an approximation algorithm 
that brings similar vertices in the vicinity of each other, with a 
constant approximation ratio of 3.  

Let 1Va and aA denotes the set of neighbours of a . Also 

let n and m be the size of lower and upper layer of the 
bipartite graph respectively. We assume that nodes in 0V and 

1V are labeled from 1 to n and 1 to m respectively. The new 

label of a denoted as R can be computed as follows: 

         )][(/])[][(
1 1
 
 


a aA

i

A

i
aaa iaAwiAiaAwR                          (1) 

         where  iAa denotes the thi  neighbour’s label of a . 

Here we have assumed the weight to be binary. If an edge exit, 
the weight is considered as 1 otherwise 0.   
Let 0, Vdc  such that c is placed to the left of d . Here we 

have assumed the weight to be the real weight, which is 
weight of an edge. If cdM denote the sum of the weighted 

crossings between the edges incident on c and d , it can be 
computed as follows: 

            


 


1

1 1
)()(

m

k

m

kj
cd dkwcjwM                                        (2) 

We perform hard partitioning of 0V into m sets 10 mSS  , such 

that: 
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              where 10  mq , and 1q . 

We have ordered the partitions in non decreasing order of 
their indices from left to right. After placing the vertices in 
their respective partitions, the correct position of any vertex 

inside a partition can be determined by the following 
condition: 

             
   


q

j

m

qj

q

j

m

qj
djwcjwcjwdjw

1 1 1 1
)()()()(                 (5) 

If the equation 5 holds, then c is placed to the left of d , 
otherwise c is placed to the right of d . The pseudocode for 
the two layer free weighted crossing minimization is given in 
Algorithm I. 
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IV.  IMPLEMENTATION  

For the implementation of the proposed model, our technique 
consists of the following basic steps: 

a. Preprocessing of  data in D  
b.  Weighted crossing minimization of G  to get G  

c. Extraction of biclusters from G  
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     We have implemented our proposed algorithm in C++ 
under windows environment on a computer with 
configuration of Core 2 Duo 2.2 GHz of CPU and 3 GB 
RAM. We evaluate its accuracy and performance using 
synthetically generated dataset and real dataset. For real 
gene expression dataset, we have considered the model 
organism Saccharomyces Cerevisiae, provided by Gasch et 
al. [17], since the yeast GO annotations are more extensive 
compared to other organisms. This gene expression dataset 
contains 2,993 genes and 173 different stress conditions. 

A. Preprocessing of Data 
      Gene expression data is usually noisy and may contain 
missing values. In order to deal with these missing values, 
we have adopted the simple approach used in [15], where all 
missing values are replaced by zero. Further, preparing data 
for cluster analysis requires transformation, such as 
standardization or normalization. Before normalizing data, 
we have temporarily removed data beyond a threshold value 
(three standard deviation), to reduce the effect of outliers in 
the data. Then, the gene expression data is transformed using 
z-score standardization, where the transformed variables 
have a mean of 0 and variance of 1. Finally, the temporarily 
removed outliers that are below the mean value are replaced 
by the minimum value, where as the outliers above the mean 
values are replaced by the maximum value of the final 

normalized data.  Further, to handle outliers more efficiently, 

we have adopted the approach used in [16], where the 
normalized sample data is partitioned into unequal length 
intervals based on mean value of the partition.  Here, we 
discertize each gene expression level into unequal length 
intervals, in order to handle extreme outlier values.  

 
B. Crossing Minimization 
    Most of the crossing minimization takes place in the first 
few iterations and hence we employ the weighted barycenter 
heuristic on the upper layer for only one iteration to place 
similar vertices in the vicinity of each other. We decide the 
correct partition for a node in the lower layer based on its left 
and right weighted sum value. Starting from the first adjacent 
node of any node in the lower layer, we increase the left 
weighted sum each time and decrease the right weighted sum 
value whenever necessary. When the left weighted sum is 
greater than or equal to the right weighted sum, then the node 
is placed in the corresponding partition. Finally, based on the 
amount of weighted crossing between any two nodes in the 
lower layer, we decide the correct place of a node inside the 
partition. Fig. 1 illustrates the application of Algorithm I for 
crossing minimization that leads to rearrangement of vertices 
in both top and bottom layer of the bipartite graph. Fig. 1(c) 
shows the rearrangement of top layer vertices whereas Fig. 
1(d) shows the rearrangement of bottom layer vertices.  

 
(a) 

 
(b) 

 
(c) 

 

 
 

(d) 
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(e) 

 
Fig. 1 (a) Input data matrix before crossing minimization (b) Bipartite graph 
representation of input data matrix (c) Bipartite graph after application of 
barycenter heuristic to the top layer (d) Bipartite graph after application of 
approximation algorithm to the bottom layer (e) Input data matrix after 
crossing minimization of the top and bottom layer. 
 

Finally,  Fig. 1(e) shows the formation of two biclusters i.e. 
{b,d,f,h}×{u,q,s} and {a,c,e,g}×{p,r,t,u}, which can be 
extracted by our proposed bicluster extraction algorithm i.e. 
Algorithm II. Here, {b,d,f,h}×{u,q,s}is a constant bicluster 
whereas {a,c,e,g}×{p,r,t,u} is a coherent bicluster. 
 

C. Bicluster Extraction 
After we employ Algorithm I for crossing minimization, 

vertices of both layers for the bipartite graph are rearranged 
so that similar rows and columns come close to each other. 
This process enables us to apply a local search algorithm for 
extraction of constant, coherent and overlapping biclusters. 
In information theory, the entropy plays a vital role as 
measures of information and uncertainty. It is a measure of 
the average uncertainty in the random variable X [21] and 
can be defined as 


x

xpxpXH )(log)()( ,                                                (6) 

where p(x) is the probability mass function of X. 
    Cheng et al. [22] used entropy to evaluate and prune 
subspaces for clustering. As similar objects form a cluster, the 
entropy of a cluster tends to be very low. This motivates us to 
employ entropy measure for the extraction of biclusters. In 
order to detect mutual interaction between two genes 

)( dandc  , we employ conditional entropy measure, which is 

defined as 

      )(log)()()(
11

lvl
L

v

v
L

l

l dcpdcpcpdcH 


 ,                              (7) 

where L is the number of discretization levels, )( lcp is the 

probability of values in discretization level l of gene c , and 

)( lv dcp is the conditional probability of the values in the 

interval u of gene c given values in interval l of gene d .  

    Our technique is row major, as we compare two genes 
simultaneously for similarity. We keep reference set of 
matching conditions based on threshold value )( of the 

conditional entropy. Conditions are added to this set, if the 
conditional entropy is less than   . We also keep a gene 

cluster in order to add similar genes that contain similar 
conditions.  If subsequent genes contain more matching 
conditions\, then the overlap flag is set. When a sub matrix   
contains minimum number genes and conditions, and satisfies 
the threshold value, we declare it as a bicluster and store the 
same in a bicluster set.  Pseudocode for bicluster extraction is 
given in Algorithm II.  
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V.  EVALUATION FRAMEWORK 

A. Complexity Analysis 

The time complexity for partitioning the conditions of input 
data matrix into unequal length intervals is )log( nnO . In the 

first stage for Algorithm I, we rearrange the layer 1V  nodes of 

pre-processed gene expression data by weighted barycenter 
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method. This process would take time 
))(log)(( nmnmEO  . In the second stage, we 

rearrange layer 0V nodes into m partitions. The correct 

partitions for a node in 0V , which occur when lW  value is 

larger than rW , would take time )( nmEO  . Then placing 

this node in correct position in the corresponding partition 
would take time )log( mmnO  . Therefore, the total time for 

discretization into unequal length intervals and reordering the 
rows of D would take )loglog( nnmmnmEO  . 

For Algorithm II, it involve extraction of biclusters and would 
take time )(mnO . Thus, the overall time complexity of the 

proposed two layer free crossing minimization based 
biclustering which is denoted as BiFreeT and defined as: 

)()loglog( mnOnnmmnmEOTBiFree  .  

The second term )(mnO  tends to dominate, which shows 

that the time complexity has linear relationship with size of 
the given problem. 

 

B. Synthetic Dataset 

In case of synthetic gene expression data, we used the 
technique proposed by Zimmermann et al. [18] for evaluation 
of implanted constant, coherent and overlap biclusters. For 
constant bicluster generation, we adopt [23] the following 
steps: 

 
a. Generate a 100 × 100 matrix A with all elements  0 
b. Generate ten biclusters (modules) of size 10 × 10   

with all  elements 1 
c. Replace elements of biclusters with random noise 

values from uniform distribution ),(   

d. Implant the ten biclusters into A without overlap 

For all experimentation, we set the noise level range from 0.0 
to 0.25. In case of overlapping biclusters, we used 10 degrees 
of overlap (od  = 0,1,2,3,4,5,6,7,8,9) , where the size of matrix 
and bicluster vary from 100 × 100 to 110 × 110 and from 10 × 
10 to 20 × 20, respectively. The steps for evaluation of 
coherent biclusters are same as that of constant bicluster, but 
rows and columns in a bicluster have a 0.02 increasing trend. 
In order to validate the accuracies of different algorithms, we 
apply the gene match score proposed by Zimmermann et al. 
[18]. Let M1 and M2 be two sets of biclusters. The match score 
of M1 with respect to M2 is given by: 
 

  
21

21

),( ),(1
21

111 222

max
1

),(
GG

GG

M
MMS

MSG MSG
G 


 

 
,                      (8)   

                                                          
where G and S are set of genes and a set of samples in a 
bicluster respectively. Let Mopt represent the set of implanted 
biclusters and M be the set of output biclusters of an algorithm. 

The score ),( optMMS represents the degree of similarity 

between extracted biclusters and the implanted biclusters, 
where as the score ),( MMS opt represents how well each of 

the true biclusters extracted by the bicluster algorithm. As per 
our experimental results, in case of high noise level for 
extraction of constant biclusters; cHawk, BiFree, ISA and 
RMSBE shows high accuracies; BiMax and SAMBA perform 
moderately, and CC perform poorly. For coherent biclusters, 
BiFree has a comparable accuracy with cHawk and RMSBE. 
In case of overlapped biclusters, BiFree is marginally affected 
by the overlap degree of the implanted biclusters. 
 
C. Real Dataset 

We have adopted the approach used by Zimmermann et al. 
[18] to evaluate the performance of BiFree with other 
algorithms for real gene expression data, provided by Gasch et 
al. [17]. In order to evaluate extracted biclusters based on 
Gene Ontology (GO) annotations [19] for their enrichment 
level, we have also used a web tool called FuncAssociate [20]. 
The adjusted significance scores (α) were computed using 
FuncAssociate and is shown in Fig. 2. Based on this score, the 
results for BiFree is compared with other algorithms like 
cHawk, BiMax, RMSBE, OSPM, SAMBA and CC. 

 

 
  

Fig. 2 Proportion of GO based enriched bicluster 

 
D. Performance of BiFree 

In this section we analyse the performance of our proposed 
BiFree algorithm. We have synthetically generated datasets 
with sizes ranging from 2000 × 100 to 100000 × 500 and 
implant constant biclusters in this matrix. Fig. 3 illustrates the 
performance of BiFree, cHawk and RMSBE with respect to 
execution time for different size of dataset. As per our 
complexity analysis, the execution time of BiFree and cHawk 
increase linearly with size of the dataset, while execution time 
for RMSBE increases at a much higher rate. This confirms the 
practical applicability of our proposed algorithm.  
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Fig. 3  Performance of BiFree, cHawk and RMSBE 

 

VI. CONCLUSIONS 

We have proposed and implemented a biclustering 
technique, called BiFree, in order to extract constant, coherent 
and overlapping biclusters. The technique employs weighted 
two layer free crossing minimization on the conditioned gene 
expression data, so that similar genes and conditions come 
close to each other that form different types of biclusters. In 
order to extract these biclusters, we have proposed a local 
search algorithm based on conditional entropy. We have 
verified the accuracy and performance of our algorithm for 
synthetic and real gene expression data sets. The experimental 
results reveal that our technique outperforms other 
conventional techniques in terms noise removal and execution 
time.    
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